Discriminatory Algorithms and Inefficient Labor Markets: Biases and Discrimination in Hiring and Performance Evaluation. Hiring Under the Post-Homo Economicus Paradigm.

Authors

  • Carolina Pinasco UNRC Autor/a

DOI:

https://doi.org/10.63207/a84d1744

Keywords:

algorithmic discrimination; law & economics; disparate impact; information asymmetry; transaction costs; algorithmic governance.

Abstract

The paper shows how algorithmic tools in hiring and performance evaluation can produce disparate impact and efficiency losses. It integrates law-and-economics with case-law and comparative regulation. It proposes a governance architecture combining ex-ante audits and traceability, and provides a replicable econometric plan to estimate group-level disparities in selection rates and wages. Bias mitigation is reframed as an efficiency requirement, not merely compliance.

Downloads

Download data is not yet available.

References

REFERENCIAS BIBLIOGRÁFICAS

Acemoglu, D., & Restrepo, P. (2023). The Fall of the Labor Share and the Rise of Superstar Firms. Journal of Political Economy, 130(2), 1-30. https://doi.org/10.1086/721816

Agrawal, A., Gans, J., & Goldfarb, A. (2018). Prediction Machines: The Simple Economics of Artificial Intelligence. Harvard Business Review Press.

Akerlof, G. A. (1970). The Market for “Lemons”: Quality Uncertainty and the Market Mechanism. The Quarterly Journal of Economics, 84(3), 488-500. https://doi.org/10.2307/1879431

Arrow, K. J. (1971). The Theory of Discrimination. Working Paper. National Bureau of Economic Research. https://www.nber.org/papers/w0018

Becker, G. S. (1957). The Economics of Discrimination. University of Chicago Press.

Buolamwini, B., & Gebru, T. (2018). Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification. Conference on Fairness, Accountability and Transparency, 77-91.

Kahneman, D., & Tversky, A. (1974). Judgment Under Uncertainty: Heuristics and Biases. Science, 185(4157), 1124-1131. https://doi.org/10.1126/science.185.4157.1124

Noble, S. U. (2018). Algorithms of Oppression: How Search Engines Reinforce Racism. New York University Press.

NYC Local Law 144. (2023). Automated Employment Decision Tools Law. Effective January 1, 2023. City of New York.

Phelps, E. S. (1972). The statistical theory of racism and sexism. American Economic Review, 62(4), 659–661.

Sheard, L., Lautenbach, F., Lace, S., & Wischmann, S. (2025). Algorithm-Facilitated Discrimination. Journal of Law and Society. https://doi.org/10.1111/jols.12535

Spence, M. (1973). Job market signaling. The Bell Journal of Economics, 4(2), 355–374. https://doi.org/10.2307/3003186

Thaler, R. H. (2015). Misbehaving: The Making of Behavioral Economics. W.W. Norton & Company.

Wilson, V., & Darity Jr., W. (2021). Understanding Black-White Disparities in Labor Market Outcomes: Requires Models That Account for Persistent Discrimination and Unequal Bargaining Power. Economic Policy Institute. https://www.epi.org/unequalpower/publications/understanding-black-white-disparities-in-labor-market-outcomes/

1 Fuentes citadas

“Sesgos y discriminaciones sociales de los algoritmos en Inteligencia Artificial: una revisión documental” acceso: octubre 19, 2025, https://dialnet.unirioja.es/servlet/articulo?codigo=9380872

US EEOC's first settlement in AI hiring discrimination | United States - Norton Rose Fulbright, acceso: octubre 19, 2025, https://www.nortonrosefulbright.com/en-us/knowledge/publications/2ec12415/us-eeocs-first-settlement-in-ai-hiring-discrimination

Equal Employment Opportunity Commission v. iTutorGroup, Inc. 1 ..., acceso: octubre 05, 2025, https://clearinghouse.net/case/44258/

Judgment under Uncertainty: Heuristics and Biases - PubMed, acceso: octubre 05, 2025, https://pubmed.ncbi.nlm.nih.gov/17835457/

The Market for "Lemons": Quality Uncertainty and the Market ..., acceso: octubre 05, 2025, https://www.sfu.ca/~wainwrig/Econ400/akerlof.pdf

Prediction Machines, Updated and Expanded: The Simple Economics of Artificial Intelligence - HBR Store, acceso: octubre 05, 2025, https://store.hbr.org/product/prediction-machines-updated-and-expanded-the-simple-economics-of-artificial-intelligence/10598

“Why Should I Trust You?”: Explaining the Predictions of Any Classifier - ResearchGate, acceso: octubre 05, 2025, https://www.researchgate.net/publication/305999024_Why_Should_I_Trust_You_Explaining_the_Predictions_of_Any_Classifier

Algorithms of Oppression: How Search Engines Reinforce Racism - Project MUSE, acceso: octubre 05, 2025, https://muse.jhu.edu/book/64995

Gender Shades, acceso: octubre 05, 2025, http://gendershades.org/overview.html

Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification, acceso: octubre 05, 2025, https://proceedings.mlr.press/v81/buolamwini18a.html

UNITED STATES DISTRICT COURT NORTHERN DISTRICT OF CALIFORNIA DEREK MOBLEY, Plaintiff, v. WORKDAY, INC., Defendant. Case No. 2 - GovInfo, acceso: octubre 05, 2025, https://www.govinfo.gov/content/pkg/USCOURTS-cand-3_23-cv-00770/pdf/USCOURTS-cand-3_23-cv-00770-1.pdf

Federal Court Allows Collective Action Lawsuit Over Alleged AI ..., acceso: octubre 05, 2025,

Mobley v. Workday: Court Holds AI Service Providers Could Be ..., acceso: octubre 05, 2025, https://www.seyfarth.com/news-insights/mobley-v-workday-court-holds-ai-service-providers-could-be-directly-liable-for-employment-discrimination-under-agent-theory.html

Model Cards for Model Reporting - arXiv, acceso: octubre 05, 2025, https://arxiv.org/pdf/1810.03993

Published

2025-12-17

How to Cite

Discriminatory Algorithms and Inefficient Labor Markets: Biases and Discrimination in Hiring and Performance Evaluation. Hiring Under the Post-Homo Economicus Paradigm. (2025). Fundamentos, 2. https://doi.org/10.63207/a84d1744