Algoritmos Discriminadores y Mercados de Trabajo Ineficientes: Sesgos y discriminación en la contratación y evaluación de desempeño laboral. La Contratación bajo el paradigma Post-Homo economicus.
DOI:
https://doi.org/10.63207/a84d1744Palabras clave:
discriminación algorítmica; análisis económico del derecho; impacto dispar; asimetría de información; costos de transacción; gobernanza algorítmica.Resumen
Este artículo explica cómo herramientas algorítmicas en selección y evaluación laboral pueden generar impacto dispar y fallos de eficiencia en mercados de trabajo. Integra análisis económico del derecho (discriminación por preferencias y estadística, costos de transacción, asimetrías de información) con la dimensión jurídico-procesal de casos recientes y marcos regulatorios. Aporta una arquitectura de gobernanza con auditoría ex-ante y trazabilidad, y explicita un plan de evaluación econométrica replicable para medir efectos en tasas de selección y brechas salariales por grupo. Sustenta que la mitigación de sesgos es condición de eficiencia, no solo de cumplimiento.
Descargas
Referencias
REFERENCIAS BIBLIOGRÁFICAS
Acemoglu, D., & Restrepo, P. (2023). The Fall of the Labor Share and the Rise of Superstar Firms. Journal of Political Economy, 130(2), 1-30. https://doi.org/10.1086/721816
Agrawal, A., Gans, J., & Goldfarb, A. (2018). Prediction Machines: The Simple Economics of Artificial Intelligence. Harvard Business Review Press.
Akerlof, G. A. (1970). The Market for “Lemons”: Quality Uncertainty and the Market Mechanism. The Quarterly Journal of Economics, 84(3), 488-500. https://doi.org/10.2307/1879431
Arrow, K. J. (1971). The Theory of Discrimination. Working Paper. National Bureau of Economic Research. https://www.nber.org/papers/w0018
Becker, G. S. (1957). The Economics of Discrimination. University of Chicago Press.
Buolamwini, B., & Gebru, T. (2018). Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification. Conference on Fairness, Accountability and Transparency, 77-91.
Kahneman, D., & Tversky, A. (1974). Judgment Under Uncertainty: Heuristics and Biases. Science, 185(4157), 1124-1131. https://doi.org/10.1126/science.185.4157.1124
Noble, S. U. (2018). Algorithms of Oppression: How Search Engines Reinforce Racism. New York University Press.
NYC Local Law 144. (2023). Automated Employment Decision Tools Law. Effective January 1, 2023. City of New York.
Phelps, E. S. (1972). The statistical theory of racism and sexism. American Economic Review, 62(4), 659–661.
Sheard, L., Lautenbach, F., Lace, S., & Wischmann, S. (2025). Algorithm-Facilitated Discrimination. Journal of Law and Society. https://doi.org/10.1111/jols.12535
Spence, M. (1973). Job market signaling. The Bell Journal of Economics, 4(2), 355–374. https://doi.org/10.2307/3003186
Thaler, R. H. (2015). Misbehaving: The Making of Behavioral Economics. W.W. Norton & Company.
Wilson, V., & Darity Jr., W. (2021). Understanding Black-White Disparities in Labor Market Outcomes: Requires Models That Account for Persistent Discrimination and Unequal Bargaining Power. Economic Policy Institute. https://www.epi.org/unequalpower/publications/understanding-black-white-disparities-in-labor-market-outcomes/
1 Fuentes citadas
“Sesgos y discriminaciones sociales de los algoritmos en Inteligencia Artificial: una revisión documental” acceso: octubre 19, 2025, https://dialnet.unirioja.es/servlet/articulo?codigo=9380872
US EEOC's first settlement in AI hiring discrimination | United States - Norton Rose Fulbright, acceso: octubre 19, 2025, https://www.nortonrosefulbright.com/en-us/knowledge/publications/2ec12415/us-eeocs-first-settlement-in-ai-hiring-discrimination
Equal Employment Opportunity Commission v. iTutorGroup, Inc. 1 ..., acceso: octubre 05, 2025, https://clearinghouse.net/case/44258/
Judgment under Uncertainty: Heuristics and Biases - PubMed, acceso: octubre 05, 2025, https://pubmed.ncbi.nlm.nih.gov/17835457/
The Market for "Lemons": Quality Uncertainty and the Market ..., acceso: octubre 05, 2025, https://www.sfu.ca/~wainwrig/Econ400/akerlof.pdf
Prediction Machines, Updated and Expanded: The Simple Economics of Artificial Intelligence - HBR Store, acceso: octubre 05, 2025, https://store.hbr.org/product/prediction-machines-updated-and-expanded-the-simple-economics-of-artificial-intelligence/10598
“Why Should I Trust You?”: Explaining the Predictions of Any Classifier - ResearchGate, acceso: octubre 05, 2025, https://www.researchgate.net/publication/305999024_Why_Should_I_Trust_You_Explaining_the_Predictions_of_Any_Classifier
Algorithms of Oppression: How Search Engines Reinforce Racism - Project MUSE, acceso: octubre 05, 2025, https://muse.jhu.edu/book/64995
Gender Shades, acceso: octubre 05, 2025, http://gendershades.org/overview.html
Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification, acceso: octubre 05, 2025, https://proceedings.mlr.press/v81/buolamwini18a.html
UNITED STATES DISTRICT COURT NORTHERN DISTRICT OF CALIFORNIA DEREK MOBLEY, Plaintiff, v. WORKDAY, INC., Defendant. Case No. 2 - GovInfo, acceso: octubre 05, 2025, https://www.govinfo.gov/content/pkg/USCOURTS-cand-3_23-cv-00770/pdf/USCOURTS-cand-3_23-cv-00770-1.pdf
Federal Court Allows Collective Action Lawsuit Over Alleged AI ..., acceso: octubre 05, 2025,
Mobley v. Workday: Court Holds AI Service Providers Could Be ..., acceso: octubre 05, 2025, https://www.seyfarth.com/news-insights/mobley-v-workday-court-holds-ai-service-providers-could-be-directly-liable-for-employment-discrimination-under-agent-theory.html
Model Cards for Model Reporting - arXiv, acceso: octubre 05, 2025, https://arxiv.org/pdf/1810.03993
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Carolina Pinasco (Autor/a)

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Usted es libre de:
- Compartir — copiar y redistribuir el material en cualquier medio o formato
- Adaptar — remezclar, transformar y construir a partir del material
- La licenciante no puede revocar estas libertades en tanto usted siga los términos de la licencia
Bajo los siguientes términos:
- Atribución — Usted debe dar crédito de manera adecuada , brindar un enlace a la licencia, e indicar si se han realizado cambios . Puede hacerlo en cualquier forma razonable, pero no de forma tal que sugiera que usted o su uso tienen el apoyo de la licenciante.
- NoComercial — Usted no puede hacer uso del material con propósitos comerciales .
- CompartirIgual — Si remezcla, transforma o crea a partir del material, debe distribuir su contribución bajo la la misma licencia del original.
- No hay restricciones adicionales — No puede aplicar términos legales ni medidas tecnológicas que restrinjan legalmente a otras a hacer cualquier uso permitido por la licencia.




-